Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 16(8): 1438-1457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622099

RESUMO

Domestication is an excellent case study for understanding adaptation and multiple fungal lineages have been domesticated for fermenting food products. Studying domestication in fungi has thus both fundamental and applied interest. Genomic studies have revealed the existence of four populations within the blue-cheese-making fungus Penicillium roqueforti. The two cheese populations show footprints of domestication, but the adaptation of the two non-cheese populations to their ecological niches (i.e., silage/spoiled food and lumber/spoiled food) has not been investigated yet. Here, we reveal the existence of a new P. roqueforti population, specific to French Termignon cheeses, produced using small-scale traditional practices, with spontaneous blue mould colonisation. This Termignon population is genetically differentiated from the four previously identified populations, providing a novel source of genetic diversity for cheese making. The Termignon population indeed displayed substantial genetic diversity, both mating types, horizontally transferred regions previously detected in the non-Roquefort population, and intermediate phenotypes between cheese and non-cheese populations. Phenotypically, the non-Roquefort cheese population was the most differentiated, with specific traits beneficial for cheese making, in particular higher tolerance to salt, to acidic pH and to lactic acid. Our results support the view that this clonal population, used for many cheese types in multiple countries, is a domesticated lineage on which humans exerted strong selection. The lumber/spoiled food and silage/spoiled food populations were not more tolerant to crop fungicides but showed faster growth in various carbon sources (e.g., dextrose, pectin, sucrose, xylose and/or lactose), which can be beneficial in their ecological niches. Such contrasted phenotypes between P. roqueforti populations, with beneficial traits for cheese-making in the cheese populations and enhanced ability to metabolise sugars in the lumber/spoiled food population, support the inference of domestication in cheese fungi and more generally of adaptation to anthropized environments.

2.
Food Microbiol ; 115: 104309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567615

RESUMO

Penicillium camemberti is a domesticated species adapted to the dairy environment, which is used as adjunct cultures to ripen soft cheeses. A recent population genomics analysis on P. camemberti revealed that P. camemberti is a clonal lineage with two varieties almost identical genetically but with contrasting phenotypes in terms of growth, color, mycotoxin production and inhibition of contaminants. P. camemberti variety camemberti is found on Camembert and Brie cheeses, and P. camemberti variety caseifulvum is mainly found on other cheeses like Saint-Marcellin and Rigotte de Condrieu. This study aimed to evaluate the impact of water activity (aw) reduced by sodium chloride (NaCl) and the increase of carbon dioxide (CO2) partial pressure, on conidial germination and growth of two varieties of P. camemberti: var. Camemberti and var. Caseifulvum. Mathematical models were used to describe the responses of P. camemberti strains to both abiotic factors. The results showed that these genetically distant strains had similar responses to increase in NaCl and CO2 partial pressure. The estimated cardinal values were very close between the strains although all estimated cardinal values were significantly different (Likelihood ratio tests, pvalue = 0.05%). These results suggest that intraspecific variability could be more exacerbated during fungal growth compared with conidial germination, especially in terms of macroscopic morphology. Indeed, var. Caseifulvum seemed to be more sensitive to an increase of CO2 partial pressure, as shown by the fungal morphology, with the occurrence of irregular outgrowths, while the morphology of var. Camemberti remains circular. These data could make it possible to improve the control of fungal development as a function of salt and carbon dioxide partial pressure. These abiotic factors could serve as technological barriers to prevent spoilage and increase the shelf life of cheeses. The present data will allow more precise predictions of fungal proliferation as a function of salt and carbon dioxide partial pressure, which are significant technological hurdles in cheese production.


Assuntos
Queijo , Penicillium , Cloreto de Sódio/farmacologia , Esporos Fúngicos , Dióxido de Carbono , Queijo/microbiologia
3.
Food Microbiol ; 115: 104324, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567633

RESUMO

In dairy industry, filamentous fungi are used as adjunct cultures in fermented products for their technological properties but they could also be responsible for food spoilage and mycotoxin production. The consumer demands about free-preservative products has increased in recent years and lead to develop alternative methods for food preservation. Modified Atmosphere Packaging (MAP) can inhibit fungal growth and therefore increase the food product shelf-life. This study aimed to evaluate radial growth as a function of CO2 and more particularly carbonic acid for fourteen adjuncts and/or fungal spoiler isolated from dairy products or dairy environment by using predictive mycology tools. The impact of the different chemical species linked to CO2 (notably carbonic acid) were study because it was reported previously that undissociated carbonic acid impacted bacterial growth and bicarbonates ions were involved in modifications of physiological process of fungal cells. A significant diversity in the responses of selected strains was observed. Mucor circinelloides had the fastest growth rates (µ > 11 mm. day-1) while Bisifusarium domesticum, Cladosporium herbarum and Penicillium bialowiezense had the slowest growth rates (µ < 1 mm. day-1). Independently of the medium pH, the majority of strains were sensitive to total carbonic acid. In this case, it was not possible to conclude if CO2 active form was gaseous or aqueous so modeling were performed as a function of CO2 percentage. Only Geotrichum candidum and M. circinelloides strains were sensitive to undissociated carbonic acid. Among the fourteen strains, P. bialowiezense was the less sensitive strain to CO2, no growth was observed at 50% of CO2 only for this strain. M. lanceolatus was the less sensitive strain to CO2, the CO250 which reduce the growth rates by 50% was estimated at 138% of CO2. Low CO2 percentage improved the growth of Penicillium expansum, Penicillium roqueforti and Paecilomyces niveus. Mathematical models (without and with optimum) were suggested to describe the impact of CO2 percentage or undissociated carbonic acid concentration on fungal growth rate.


Assuntos
Dióxido de Carbono , Ácido Carbônico , Dióxido de Carbono/farmacologia , Fungos , Laticínios/microbiologia , Conservação de Alimentos/métodos
4.
Plants (Basel) ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376008

RESUMO

Walnut dieback can be caused by several fungal pathogenic species, which are associated with symptoms ranging from branch dieback to fruit necrosis and blight, challenging the one pathogen-one disease concept. Therefore, an accurate and extensive description of the walnut fungal pathobiome is crucial. To this end, DNA metabarcoding represents a powerful approach provided that bioinformatic pipelines are evaluated to avoid misinterpretation. In this context, this study aimed to determine (i) the performance of five primer pairs targeting the ITS region in amplifying genera of interest and estimating their relative abundance based on mock communities and (ii) the degree of taxonomic resolution using phylogenetic trees. Furthermore, our pipelines were also applied to DNA sequences from symptomatic walnut husks and twigs. Overall, our results showed that the ITS2 region was a better barcode than ITS1 and ITS, resulting in significantly higher sensitivity and/or similarity of composition values. The ITS3/ITS4_KYO1 primer set allowed to cover a wider range of fungal diversity, compared to the other primer sets also targeting the ITS2 region, namely, GTAA and GTAAm. Adding an extraction step to the ITS2 sequence influenced both positively and negatively the taxonomic resolution at the genus and species level, depending on the primer pair considered. Taken together, these results suggested that Kyo set without ITS2 extraction was the best pipeline to assess the broadest fungal diversity, with a more accurate taxonomic assignment, in walnut organs with dieback symptoms.

5.
Food Res Int ; 168: 112691, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120186

RESUMO

Bisifusarium domesticum is among the main molds used during cheese-making for its "anticollanti" property that prevents the sticky smear defect of some cheeses. Previously, numerous cheese rinds were sampled to create a working collection and not only did we isolate B. domesticum but we observed a completely unexpected diversity of "Fusarium-like" fungi belonging to the Nectriaceae family. Four novel cheese-associated species belonging to two genera were described: Bisifusarium allantoides, Bisifusarium penicilloides, Longinectria lagenoides, and Longinectria verticilliformis. In this study, we thus aimed at determining their potential functional impact during cheese-making by evaluating their lipolytic and proteolytic activities as well as their capacity to produce volatile (HS-Trap GC-MS) and non-volatile secondary metabolites (HPLC & LC-Q-TOF). While all isolates were proteolytic and lipolytic, higher activities were observed at 12 °C for several B. domesticum, B. penicilloides and L. lagenoides isolates, which is in agreement with typical cheese ripening conditions. Using volatilomics, we identified multiple cheese-related compounds, especially ketones and alcohols. B. domesticum and B. penicilloides isolates showed higher aromatic potential although compounds of interest were also produced by B. allantoides and L. lagenoides. These species were also lipid producers. Finally, an untargeted extrolite analysis suggested a safety status of these strains as no known mycotoxins were produced and revealed the production of potential novel secondary metabolites. Biopreservation tests performed with B. domesticum suggested that it may be an interesting candidate for biopreservation applications in the cheese industry in the future.


Assuntos
Queijo , Fusarium , Queijo/análise , Álcoois/análise , Cromatografia Gasosa-Espectrometria de Massas
6.
Food Res Int ; 157: 111247, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761558

RESUMO

Filamentous fungi are used in the dairy industry as adjunct cultures in fermented products, but can also lead to food spoilage, waste and economic losses. The control of filamentous fungi with abiotic factors contributes to longer food shelf life and prevention of fungal spoilage. One of the main abiotic factors for controlling fungal growth in foods is water activity (aw). This study aimed to evaluate radial growth as a function of aw for sixteen fungal adjuncts and/or spoilers isolated from dairy products or a dairy environment. Glycerol (a non-ionic compound) and sodium chloride (NaCl, an ionic compound) were used to adjust the aw of culture media. This study showed significant diversity in the responses of the tested fungal strains as a function of medium aw. The growth response of Penicillium bialowiezense and Sporendonema casei was binary, with no clear decrease of growth rate until the growth limit, when the aw was reduced. For the strains of Bisifusarium domesticum, Mucor circinelloides and Penicillium camemberti, a decrease of aw had the same impact on radial growth rate regardless of the aw belonging to their growth range. For the strains of Aspergillus flavus, Cladosporium herbarum, Geotrichum candidum, Mucor lanceolatus, Penicillium expansum, Penicillium fuscoglaucum, Penicillium nalgiovense, Paecilomyces niveus, Penicillium roqueforti, Penicillium solitum and Scopulariopsis asperula, the impact of a decrease in aw was more pronounced at high aw than at low aw. A mathematical model was suggested to describe this impact on the radial growth rate. For all tested species, radial growth was more sensitive to NaCl than glycerol. The ionic strength of NaCl mainly explains the difference in the effects of the two solutes.


Assuntos
Cloreto de Sódio , Água , Laticínios/microbiologia , Glicerol , Cloreto de Sódio/farmacologia
7.
Int J Food Microbiol ; 364: 109509, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35030441

RESUMO

Nectriaceae species have been described in various natural environments or as plant or human pathogens. Within this family, the Bisifusarium domesticum species is of particular interest for food mycologists as it is used for technological functions in various cheese productions. Moreover, it has only been isolated from the cheese environment so far and, until recently, was the only Nectriaceae species described in this food product. Recently, four novel cheese-associated Nectriaceae species have been described, including two associated to the Bisifusarium genus and two to a new genus, Longinectria gen. nov.. These observations raise questions concerning the potential adaptation of these species to the cheese environment. In this context, this study first focused on determining the impact of abiotic factors on the growth of isolates belonging to the five cheese-associated species (i.e. B. allantoides sp. nov., B. domesticum, B. penicilloides sp. nov., L. lagenoides gen. nov. sp. nov. and L. verticilliforme gen. nov. sp. nov.) but also included phylogenetically close species. To do so, fungal growth kinetics in liquid medium (Potato Dextrose Broth) were determined by laser nephelometry at different temperatures, pH and water activities using NaCl as a depressor. Growth modeling was then performed to estimate cardinal values for each abiotic factor. Secondly, fungal growth was also evaluated on Potato Dextrose Agar (synthetic medium), cheese agar (cheese-mimicking medium) and Raclette de Savoie cheese (actual cheese). Our results clearly highlighted physiological differences in growth characteristics between the studied cheese-associated Nectriaceae spp. and the "non-cheese" species which could suggest, for the former, an adaptation to this food matrix. Indeed, regarding the impact of the tested abiotic factors, statistical analyses confirmed this dichotomy, with for example the lowest optimal temperatures estimated for the cheese-associated species (Topt 19.1-23.1 °C) while the other Bisifusarium species exhibited the highest optimal temperatures (Topt 26.1-36.2 °C). As for the impact of growth media, radial growth measurements highlighted that B. domesticum was the least affected species for growth on Raclette de Savoie and even grew faster on cheese agar than on synthetic medium confirming its strong adaptation to the cheese environment.


Assuntos
Queijo , Adaptação Fisiológica , Meios de Cultura , DNA Bacteriano , Fungos , Humanos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Água
8.
Food Res Int ; 148: 110610, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507754

RESUMO

Different strains of a given fungal species may display heterogeneous growth behavior in response to environmental factors. In predictive mycology, the consideration of such variability during data collection could improve the robustness of predictive models. Among food-borne fungi, Penicillium roqueforti is a major food spoiler species which is also used as a ripening culture for blue cheese manufacturing. In the present study, we investigated the intraspecific variability of cardinal temperatures and water activities (aw), namely, minimal (Tmin and awmin), optimal (Topt and awopt) and maximal (Tmax) temperatures and/or aw estimated with the cardinal model for radial growth, of 29 Penicillium roqueforti strains belonging to 3 genetically distinct populations. The mean values of cardinal temperatures and aw for radial growth varied significantly across the tested strains, except for Tmax which was constant. In addition, the relationship between the intraspecific variability of the biological response to temperature and aw and putative genetic populations (based on microsatellite markers) within the selected P. roqueforti strains was investigated. Even though no clear relationship was identified between growth parameters and ecological characteristics, PCA confirmed that certain strains had marginal growth response to temperature or aw. Overall, the present data support the idea that a better knowledge of the response to abiotic factors such as temperature and aw at an intraspecific level would be useful to model fungal growth in predictive mycology approaches.


Assuntos
Penicillium , Microbiologia de Alimentos , Penicillium/genética , Temperatura , Água
9.
BMC Genomics ; 21(1): 135, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039703

RESUMO

BACKGROUND: Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus. RESULTS: In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus. CONCLUSIONS: This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.


Assuntos
Adaptação Fisiológica/genética , Genômica , Estilo de Vida , Mucor/genética , Sequência de Bases/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Especificidade da Espécie
10.
Food Microbiol ; 86: 103311, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703856

RESUMO

Filamentous fungi are one of the main causes of food losses worldwide and their ability to produce mycotoxins represents a hazard for human health. Their correct and rapid identification is thus crucial to manage food safety. In recent years, MALDI-TOF emerged as a rapid and reliable tool for fungi identification and was applied to typing of bacteria and yeasts, but few studies focused on filamentous fungal species complex differentiation and typing. Therefore, the aim of this study was to evaluate the use of MALDI-TOF to identify species of the Aspergillus section Flavi, and to differentiate Penicillium roqueforti isolates from three distinct genetic populations. Spectra were acquired from 23 Aspergillus species and integrated into a database for which cross-validation led to more than 99% of correctly attributed spectra. For P. roqueforti, spectra were acquired from 63 strains and a two-step calibration procedure was applied before database construction. Cross-validation and external validation respectively led to 94% and 95% of spectra attributed to the right population. Results obtained here suggested very good agreement between spectral and genetic data analysis for both Aspergillus species and P. roqueforti, demonstrating MALDI-TOF applicability as a fast and easy alternative to molecular techniques for species complex differentiation and strain typing of filamentous fungi.


Assuntos
Aspergillus/isolamento & purificação , Técnicas de Tipagem Micológica/métodos , Penicillium/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Aspergillus/química , Aspergillus/classificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Penicillium/química , Penicillium/classificação
11.
Mycobiology ; 47(2): 230-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448143

RESUMO

The Great Sebkha of Oran is a closed depression located in northwestern of Algeria. Despite the ranking of this sebkha among the wetlands of global importance by Ramsar Convention in 2002, no studies on the fungal community in this area have been carried out. In our study, samples were collected from two different regions. The first region is characterized by halophilic vegetation and cereal crops and the second by a total absence of vegetation. The isolated strains were identified morphologically then by molecular analysis. The biotechnological interest of the strains was evaluated by testing their ability to grow at different concentration of NaCl and to produce extracellular enzymes (i.e., lipase, amylase, protease, and cellulase) on solid medium. The results showed that the soil of sebkha is alkaline, with the exception of the soil of cereal crops that is neutral, and extremely saline. In this work, the species Gymnoascus halophilus, Trichoderma gamsii, the two phytopathogenic fungi, Fusarium brachygibbosum and Penicillium allii, and the teleomorphic form of P. longicatenatum observed for the first time in this species, were isolated for the first time in Algeria. The halotolerance test revealed that the majority of the isolated are halotolerant. Wallemia sp. and two strains of G. halophilus are the only obligate halophilic strains. All strains are capable to secrete at least one of the four tested enzymes. The most interesting species presenting the highest enzymatic index were Aspergillus sp. strain A4, Chaetomium sp. strain H1, P. vinaceum, G. halophilus, Wallemia sp. and Ustilago cynodontis.

12.
Genomics ; 111(6): 1306-1314, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30195068

RESUMO

Mucor species belong to the Mucorales order within the Mucoromycota phylum, an early diverging fungal lineage. Although Mucor species are often ubiquitous some species have been reported to specifically occur in certain ecological niches. In this study, similarities and differences of a representative set of Mucor species with contrasted lifestyles were investigated at the transcriptome level. Five strains pertaining to five different species were studied, namely M. fuscus and M. lanceolatus, two species used in cheese production (during ripening), M. racemosus, a recurrent cheese spoiler sometimes described as an opportunistic pathogen, M. circinelloides, often described as an opportunistic pathogen and M. endophyticus, a plant endophyte. A core transcriptome was delimited and a phylogenetic analysis led to an altered phylogenetic placement of M. endophyticus compared to previously published topologies. Interestingly, the core transcriptome comprising 5566 orthogroups included genes potentially involved in secondary metabolism. As expected, given the wide taxonomic range investigated, the five transcriptomes also displayed specificities that can be, for some of them, linked to the different lifestyles such as differences in the composition of transcripts identified as virulence factors or carbohydrate transporters.


Assuntos
Mucor/genética , Transcriptoma , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Mucor/metabolismo , Família Multigênica , Análise de Sequência de RNA
13.
Data Brief ; 11: 214-220, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28275659

RESUMO

The data presented are associated with the "Proteomic analysis of the adaptative response of Mucor spp. to cheese environment" (Morin-Sardin et al., 2016) article [1]. Mucor metabolism is poorly documented in the literature and while morphology and growth behavior suggest potential adaptation to cheese for some strains, no adaptation markers to cheese environment have been identified for this genus. To establish the possible existence of metabolic functions related to cheese adaptation, we used a gel based 2-DE proteomic approach coupled to LC-MS/MS to analyze three strains from species known or proposed to have a positive or negative role in cheese production as well as a strain from a non-related cheese-species.

14.
J Proteomics ; 154: 30-39, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-27940316

RESUMO

In the cheese industry context, Mucor species exhibit an ambivalent behavior as some species are essential "technological" organisms of some cheeses while others can be spoiling agents. Previously, we observed that cheese "technological" species exhibited higher optimal growth rates on cheese related matrices than on synthetic media. This growth pattern combined with morphological differences raise the question of their adaptation to cheese. In this study, using a comparative proteomic approach, we described the metabolic pathways of three Mucor strains considered as "technological" or "contaminant" in the cheese environment (M. lanceolatus UBOCC-A-109153, M. racemosus UBOCC-A-109155, M. circinelloides CBS 277-49) as well as a non-cheese related strain (M. endophyticus CBS 385-95). Overall, 15.8 to 19.0% of the proteomes showed a fold change ≥1.6 in Potato Dextrose Agar (PDA) versus Cheese Agar (CA), a cheese mimicking-medium. The 289 differentially expressed proteins identified by LC MS-MS analysis were mostly assigned to energy and amino-acid metabolisms in PDA whereas a higher diversity of biological processes was observed for cheese related strains in CA. Surprisingly, the vast majority (72.9%) of the over-accumulated proteins were different according to the considered medium and strain. These results strongly suggest that the observed better adaptative response of "technological" strains to cheese environment is mediated by species-specific proteins. BIOLOGICAL SIGNIFICANCE: The Mucor genus consists of a multitude of poorly known species. In the food context, few species are known for their positive role in the production of various food products, including cheese, while others are spoiling agents. The present study focused on the analysis of morphological and proteome differences of various Mucor spp. representative strains known as either positively (hereafter referred as "technological") or negatively (hereafter referred as "contaminant") associated with cheese or non-related to cheese (endophyte) on two different media, a synthetic medium and a cheese-mimicking medium. The main goal was to assess if adaptative traits of "technological" strains to the cheese environment could be identified. This work was based on observations we did in a recently published physiological study (Morin-Sardin et al., 2016). One of the important innovative aspects lies in the use for the first time of an extensive 2-DE approach to compare proteome variations for 4 strains on two different media. Results obtained offered an insight in the metabolic mechanisms associated with growth on a given medium and showed that adaptation to cheese environment is probably supported by species-specific proteins. The obtained data represent an essential step point for more targeted studies at the genomic and transcriptomic levels.


Assuntos
Adaptação Fisiológica , Queijo/microbiologia , Mucor/química , Proteômica/métodos , Microbiologia de Alimentos , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Redes e Vias Metabólicas , Mucor/crescimento & desenvolvimento , Mucor/fisiologia , Especificidade da Espécie
15.
Food Microbiol ; 62: 239-250, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889155

RESUMO

Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.


Assuntos
Genes Fúngicos , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Queijo/microbiologia , Simulação por Computador , Expressão Gênica , Inativação Gênica , Genoma Fúngico , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas
16.
Int J Food Microbiol ; 241: 141-150, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27771579

RESUMO

Penicillium roqueforti is used as a ripening culture for blue cheeses and largely contributes to their organoleptic quality and typical characteristics. Different types of blue cheeses are manufactured and consumed worldwide and have distinct aspects, textures, flavors and colors. These features are well accepted to be due to the different manufacturing methods but also to the specific P. roqueforti strains used. Indeed, inoculated P. roqueforti strains, via their proteolytic and lipolytic activities, have an effect on both blue cheese texture and flavor. In particular, P. roqueforti produces a wide range of flavor compounds and variations in their proportions influence the flavor profiles of this type of cheese. Moreover, P. roqueforti is also characterized by substantial morphological and genetic diversity thus raising the question about the functional diversity of this species. In this context, 55 representative strains were screened for key metabolic properties including proteolytic activity (by determining free NH2 amino groups) and secondary metabolite production (aroma compounds using HS-Trap GC-MS and mycotoxins via LC-MS/Q-TOF). Mini model cheeses were used for aroma production and proteolysis analyses, whereas Yeast Extract Sucrose (YES) agar medium was used for mycotoxin production. Overall, this study highlighted high functional diversity among isolates. Noteworthy, when only P. roqueforti strains isolated from Protected Designation of Origin (PDO) or Protected Geographical Indication (PGI) blue cheeses were considered, a clear relationship between genetic diversity, population structure and the assessed functional traits was shown.


Assuntos
Queijo/microbiologia , Metaboloma , Micotoxinas/análise , Naftóis/análise , Penicillium/classificação , Penicillium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Variação Genética , Penicillium/crescimento & desenvolvimento , Fenótipo , Metabolismo Secundário
17.
Fungal Biol ; 120(8): 1017-1029, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27521633

RESUMO

The fungal genus Cladosporium (Cladosporiaceae, Dothideomycetes) is composed of a large number of species, which can roughly be divided into three main species complexes: Cladosporium cladosporioides, Cladosporium herbarum, and Cladosporium sphaerospermum. The aim of this study was to characterize strains isolated from contaminated milk bread rolls by phenotypic and genotypic analyses. Using multilocus data from the internal transcribed spacer ribosomal DNA (rDNA), partial translation elongation factor 1-α, actin, and beta-tubulin gene sequences along with Fourier-transform infrared (FTIR) spectroscopy and morphological observations, three isolates were identified as a new species in the C. sphaerospermum species complex. This novel species, described here as Cladosporium lebrasiae, is phylogenetically and morphologically distinct from other species in this complex.


Assuntos
Pão/microbiologia , Cladosporium/classificação , Cladosporium/isolamento & purificação , Cladosporium/citologia , Cladosporium/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Contaminação de Alimentos , França , Proteínas Fúngicas/genética , Microscopia , Filogenia , Análise de Sequência de DNA , Espectroscopia de Infravermelho com Transformada de Fourier , Tubulina (Proteína)/genética
18.
Food Microbiol ; 56: 69-79, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26919819

RESUMO

The Mucor genus includes a large number of ubiquitous fungal species. In the dairy environment, some of them play a technological role providing typical organoleptic qualities to some cheeses while others can cause spoilage. In this study, we compared the effect of relevant abiotic factors for cheese production on the growth of six strains representative of dairy technological and contaminant species as well as of a non cheese related strain (plant endophyte). Growth kinetics were determined for each strain in function of temperature, water activity and pH on synthetic Potato Dextrose Agar (PDA), and secondary models were fitted to calculate the corresponding specific cardinal values. Using these values and growth kinetics acquired at 15 °C on cheese agar medium (CA) along with three different cheese types, optimal growth rates (µopt) were estimated and consequently used to establish a predictive model. Contrarily to contaminant strains, technological strains showed higher µopt on cheese matrices than on PDA. Interestingly, lag times of the endophyte strain were strongly extended on cheese related matrices. This study offers a relevant predictive model of growth that may be used for better cheese production control but also raises the question of adaptation of some Mucor strains to the cheese.


Assuntos
Queijo/microbiologia , Meios de Cultura/química , Mucor/crescimento & desenvolvimento , Adaptação Fisiológica , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mucor/classificação , Mucor/metabolismo , Temperatura , Água/metabolismo
19.
PLoS One ; 10(6): e0129849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091176

RESUMO

Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection.


Assuntos
Variação Genética , Penicillium/citologia , Penicillium/genética , Queijo/microbiologia , Microbiologia de Alimentos , Genes Fúngicos , Repetições de Microssatélites , Penicillium/classificação , Fenótipo , Filogenia
20.
Evol Appl ; 7(4): 433-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24822078

RESUMO

The emblematic fungus Penicillium roqueforti is used throughout the world as a starter culture in the production of blue-veined cheeses. Like other industrial filamentous fungi, P. roqueforti was thought to lack a sexual cycle. However, an ability to induce recombination is of great economic and fundamental importance, as it would make it possible to transform and improve industrial strains, promoting the creation of novel phenotypes and eliminating the deleterious mutations that accumulate during clonal propagation. We report here, for the first time, the induction of the sexual structures of P. roqueforti - ascogonia, cleistothecia and ascospores. The progeny of the sexual cycle displayed clear evidence of recombination. We also used the recently published genome sequence for this species to develop microsatellite markers for investigating the footprints of recombination and population structure in a large collection of isolates from around the world and from different environments. Indeed, P. roqueforti also occurs in silage, wood and human-related environments other than cheese. We found tremendous genetic diversity within P. roqueforti, even within cheese strains and identified six highly differentiated clusters that probably predate the use of this species for cheese production. Screening for phenotypic and metabolic differences between these populations could guide future development strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...